
M.Sc. (CS) UNIT – III

M.Sc. (Computer Science)

UNIT – III

DATE: 26-03-2020

Functional Dependencies

In relational database theory, a functional dependency is a constraint between two sets of

attributes in a relation from a database. In other words, functional dependency is a constraint that

describes the relationship between attributes in a relation.

Given a relation R, a set of attributes X in R is said to functionally determine another set of

attributes Y, also in R, (written X → Y) if, and only if, each X value in R is associated with precisely

one Y value in R; R is then said to satisfy the functional dependency X → Y. Equivalently,

the projection is a function, i.e. Y is a function of X.[1][2] In simple words, if the values for

the X attributes are known (say they are x), then the values for the Y attributes corresponding

to x can be determined by looking them up in any tuple of R containing x. Customarily X is called

the determinant set and Y the dependent set. A functional dependency FD: X → Y is

called trivial if Y is a subset of X.

In other words, a dependency FD: X → Y means that the values of Y are determined by the values

of X. Two tuples sharing the same values of X will necessarily have the same values of Y.

The determination of functional dependencies is an important part of designing databases in

the relational model, and in database normalization and de-normalization. A simple application of

functional dependencies is Heath’s theorem; it says that a relation R over an attribute set U and

satisfying a functional dependency X → Y can be safely split in two relations having the lossless-

join decomposition property, namely into where Z = U − XY are the rest of the attributes. (Unions of

attribute sets are customarily denoted by mere juxtapositions in database theory.) An important

notion in this context is a candidate key, defined as a minimal set of attributes that functionally

determine all of the attributes in a relation. The functional dependencies, along with the attribute

domains, are selected so as to generate constraints that would exclude as much data inappropriate

to the user domain from the system as possible.

Basic Structure of SQL

1. Basic structure of an SQL expression consists of select, from and where clauses.

o select clause lists attributes to be copied - corresponds to relational algebra project.

o from clause corresponds to Cartesian product - lists relations to be used.

o where clause corresponds to selection predicate in relational algebra.

2. Typical query has the form

3. select

4.

5. from

6.

7. where P

https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Relational_database#Constraints
https://en.wikipedia.org/wiki/Relation_(database)
https://en.wikipedia.org/wiki/Projection_(relational_algebra)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Functional_dependency#cite_note-HalpinMorgan2008-1
https://en.wikipedia.org/wiki/Functional_dependency#cite_note-HalpinMorgan2008-1
https://en.wikipedia.org/wiki/Tuple#Relational_model
https://en.wikipedia.org/wiki/Subset
https://en.wikipedia.org/wiki/Relational_model
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Denormalization
https://en.wikipedia.org/wiki/Lossless-Join_Decomposition
https://en.wikipedia.org/wiki/Lossless-Join_Decomposition
https://en.wikipedia.org/wiki/Set_union
https://en.wikipedia.org/wiki/Candidate_key
https://en.wikipedia.org/wiki/Attribute_domain
https://en.wikipedia.org/wiki/Attribute_domain
https://en.wikipedia.org/w/index.php?title=User_domain&action=edit&redlink=1

M.Sc. (CS) UNIT – III

8.

where each represents an attribute, each a relation, and P is a predicate.

9. This is equivalent to the relational algebra expression

o If the where clause is omitted, the predicate P is true.

o The list of attributes can be replaced with a * to select all.

o SQL forms the Cartesian product of the relations named, performs a selection using

the predicate, then projects the result onto the attributes named.

o The result of an SQL query is a relation.

o SQL may internally convert into more efficient expressions.

Set Operation in SQL

SQL supports few Set operations to be performed on table data. These are used to get meaningful

results from data, under different special conditions.

Union

UNION is used to combine the results of two or more Select statements. However it will eliminate

duplicate rows from its result set. In case of union, number of columns and datatype must be same

in both the tables.

Example of UNION

The First table,

ID Name

1 abhi

2 adam

The Second table,

ID Name

M.Sc. (CS) UNIT – III

2 adam

3 Chester

Union SQL query will be,

select * from First

UNION

select * from second

The result table will look like,

ID NAME

1 abhi

2 adam

3 Chester

Union All

This operation is similar to Union. But it also shows the duplicate rows.

Example of Union All

The First table,

ID NAME

1 abhi

2 adam

The Second table,

ID NAME

M.Sc. (CS) UNIT – III

2 adam

3 Chester

Union All query will be like,

select * from First

UNION ALL

select * from second

The result table will look like,

ID NAME

1 abhi

2 adam

2 adam

3 Chester

Intersect

Intersect operation is used to combine two SELECT statements, but it only retuns the records

which are common from both SELECT statements. In case of Intersect the number of columns

and datatype must be same. MySQL does not support INTERSECT operator.

Example of Intersect

The First table,

ID NAME

1 abhi

2 adam

M.Sc. (CS) UNIT – III

The Second table,

ID NAME

2 adam

3 Chester

Intersect query will be,

select * from First

INTERSECT

select * from second

The result table will look like

ID NAME

2 adam

Minus

Minus operation combines result of two Select statements and return only those result which

belongs to first set of result. MySQL does not support INTERSECT operator.

Example of Minus

The First table,

ID NAME

1 abhi

2 adam

The Second table,

ID NAME

M.Sc. (CS) UNIT – III

2 adam

3 Chester

Minus query will be,

select * from First

MINUS

select * from second

The result table will look like,

ID NAME

1 abhi

SQL has many built-in functions for performing calculations on data.

SQL Aggregate Functions

SQL aggregate functions return a single value, calculated from values in a column.

Function Description

AVG() Returns the average value

COUNT() Returns the number of rows

FIRST() Returns the first value

LAST() Returns the last value

MAX() Returns the largest value

MIN() Returns the smallest value

ROUND() Rounds a numeric field to the number of decimals specified

SUM() Returns the sum

What is a NULL Value?

A field with a NULL value is a field with no value.

If a field in a table is optional, it is possible to insert a new record or update a record without adding

a value to this field. Then, the field will be saved with a NULL value.

https://www.w3schools.com/sql/sql_func_avg.asp
https://www.w3schools.com/sql/sql_func_count.asp
https://www.w3schools.com/sql/sql_func_first.asp
https://www.w3schools.com/sql/sql_func_last.asp
https://www.w3schools.com/sql/sql_func_max.asp
https://www.w3schools.com/sql/sql_func_min.asp
https://www.w3schools.com/sql/sql_func_round.asp
https://www.w3schools.com/sql/sql_func_sum.asp

M.Sc. (CS) UNIT – III

Note: It is very important to understand that a NULL value is different from a zero value or a field

that contains spaces. A field with a NULL value is one that has been left blank during record

creation!

How to Test for NULL Values?

It is not possible to test for NULL values with comparison operators, such as =, <, or <>.

We will have to use the IS NULL and IS NOT NULL operators instead.

IS NULL Syntax

SELECT column_names

FROM table_name

WHERE column_name IS NULL;

IS NOT NULL Syntax

SELECT column_names

FROM table_name

WHERE column_name IS NOT NULL;

SQL CREATE VIEW Statement

In SQL, a view is a virtual table based on the result-set of an SQL statement.

A view contains rows and columns, just like a real table. The fields in a view are fields from one

or more real tables in the database.

You can add SQL functions, WHERE, and JOIN statements to a view and present the data as if

the data were coming from one single table.

CREATE VIEW Syntax

CREATE VIEW view_name AS

SELECT column1, column2, ...

FROM table_name

WHERE condition;

Note: A view always shows up-to-date data! The database engine recreates the data, using the

view's SQL statement, every time a user queries a view.

SQL CREATE VIEW Examples

If you have the Northwind database you can see that it has several views installed by default.

The view "Current Product List" lists all active products (products that are not discontinued) from

the "Products" table. The view is created with the following SQL:

CREATE VIEW [Current Product List] AS

SELECT ProductID, ProductName

FROM Products

WHERE Discontinued = No;

What is a SQL join?

M.Sc. (CS) UNIT – III

A SQL join is a Structured Query Language (SQL) instruction to combine data from two sets of

data (e.g. two tables). Before we dive into the details of a SQL join, let’s briefly discuss what SQL

is, and why someone would want to perform a SQL join.

SQL is a special-purpose programming language designed for managing information in a relational

database management system (RDBMS). The word relational here is key; it specifies that the

database management system is organized in such a way that there are clear relations defined

between different sets of data.

Relational Database Example

Imagine you’re running a store and would like to record information about your customers and

their orders. By using a relational database, you can save this information as two tables that

represent two distinct entities: customers and orders.

Customers

customer_id first_name last_name email address city state zip

1 George Washington gwashington@usa.gov 3200 Mt

Vernon

Hwy

Mount Vernon VA 22121

2 John Adams jadams@usa.gov 1250

Hancock St

Quincy MA 02169

3 Thomas Jefferson tjefferson@usa.gov 931 Thomas

Jefferson

Pkwy

Charlottesville VA 22902

4 James Madison jmadison@usa.gov 11350

Constitution

Hwy

Orange VA 22960

5 James Monroe jmonroe@usa.gov 2050 James

Monroe

Parkway

Charlottesville VA 22902

Here, information about each customer is stored in its own row, with columns specifying different

bits of information, like their first name, last name, and email address. Additionally, we associate

a unique customer number, or primary key, with each customer record.

Orders

order_id order_date amount customer_id

1 07/04/1776 $234.56 1

2 03/14/1760 $78.50 3

3 05/23/1784 $124.00 2

M.Sc. (CS) UNIT – III

4 09/03/1790 $65.50 3

5 07/21/1795 $25.50 10

6 11/27/1787 $14.40 9

Again, each row contains information about a specific order. Each order has its own unique

identification key order_idassigned to it as well.

Relational Model

You’ve probably noticed that these two examples share similar information. You can see these

simple relations diagrammed below:

Note that the orders table contains two keys: one for the order and one for the customer who placed

that order. In scenarios when there are multiple keys in a table, the key that refers to the entity

being described in that table is called the Primary Key (PK) and other key is called a Foreign

Key (FK).

DDL, DML

In our example, order_id is a primary key in the orders table, while customer_id is both a primary

key in the customers table, and a foreign key in the orders table. Primary and foreign keys are

essential to describing relations between the tables, and in performing SQL joins.

Basic SQL statements: DDL and DML

In the first part of this tutorial, you’ve seen some of the SQL statements that you need to start

building a database. This page gives you a review of those and adds several more that you

haven’t seen yet.

• SQL statements are divided into two major categories: data definition language

(DDL) and data manipulation language (DML). Both of these categories contain far more

statements than we can present here, and each of the statements is far more complex than we

show in this introduction. If you want to master this material, we strongly recommend that

you find a SQL reference for your own database software as a supplement to these pages.

Data definition language

DDL statements are used to build and modify the structure of your tables and other objects in

the database. When you execute a DDL statement, it takes effect immediately.

M.Sc. (CS) UNIT – III

• The create table statement does exactly that:

 CREATE TABLE <table name> (

 <attribute name 1> <data type 1>,

 ...

 <attribute name n> <data type n>);

The data types that you will use most frequently are character strings, which might be

called VARCHAR or CHAR for variable or fixed length strings; numeric types such as

NUMBER or INTEGER, which will usually specify a precision; and DATE or related

types. Data type syntax is variable from system to system; the only way to be sure is to

consult the documentation for your own software.

• The alter table statement may be used as you have seen to specify primary and foreign key

constraints, as well as to make other modifications to the table structure. Key constraints may

also be specified in the CREATE TABLE statement.

 ALTER TABLE <table name>

 ADD CONSTRAINT <constraint name> PRIMARY KEY (<attribute list>);

You get to specify the constraint name. Get used to following a convention of

tablename_pk (for example, Customers_pk), so you can remember what you did later.

The attribute list contains the one or more attributes that form this PK; if more than one,

the names are separated by commas.

• The foreign key constraint is a bit more complicated, since we have to specify both the FK

attributes in this (child) table, and the PK attributes that they link to in the parent table.

 ALTER TABLE <table name>

 ADD CONSTRAINT <constraint name> FOREIGN KEY (<attribute list>)

 REFERENCES <parent table name> (<attribute list>);

Name the constraint in the form childtable_parenttable_fk (for example,

Orders_Customers_fk). If there is more than one attribute in the FK, all of them must be

included (with commas between) in both the FK attribute list and the REFERENCES

(parent table) attribute list.

You need a separate foreign key definition for each relationship in which this table is

the child.

• If you totally mess things up and want to start over, you can always get rid of any object

you’ve created with a drop statement. The syntax is different for tables and constraints.

 DROP TABLE <table name>;

 ALTER TABLE <table name>

 DROP CONSTRAINT <constraint name>;

This is where consistent constraint naming comes in handy, so you can just remember

the PK or FK name rather than remembering the syntax for looking up the names in

another table. The DROP TABLE statement gets rid of its own PK constraint, but won’t

work until you separately drop any FK constraints (or child tables) that refer to this one.

M.Sc. (CS) UNIT – III

It also gets rid of all data that was contained in the table—and it doesn't even ask you if

you really want to do this!

• All of the information about objects in your schema is contained, not surprisingly, in a set

of tables that is called the data dictionary. There are hundreds of these tables most database

systems, but all of them will allow you to see information about your own tables, in many

cases with a graphical interface. How you do this is entirely system-dependent.

Data manipulation language

DML statements are used to work with the data in tables. When you are connected to most

multi-user databases (whether in a client program or by a connection from a Web page script),

you are in effect working with a private copy of your tables that can’t be seen by anyone else

until you are finished (or tell the system that you are finished). You have already seen the

SELECT statement; it is considered to be part of DML even though it just retreives data rather

than modifying it.

• The insert statement is used, obviously, to add new rows to a table.

 INSERT INTO <table name>

 VALUES (<value 1>, ... <value n>);

The comma-delimited list of values must match the table structure exactly in the number

of attributes and the data type of each attribute. Character type values are always

enclosed in single quotes; number values are never in quotes; date values are often (but

not always) in the format 'yyyy-mm-dd' (for example, '2006-11-30').

Yes, you will need a separate INSERT statement for every row.

• The update statement is used to change values that are already in a table.

 UPDATE <table name>

 SET <attribute> = <expression>

 WHERE <condition>;

The update expression can be a constant, any computed value, or even the result of a

SELECT statement that returns a single row and a single column. If the WHERE clause

is omitted, then the specified attribute is set to the same value in every row of the table

(which is usually not what you want to do). You can also set multiple attribute values at

the same time with a comma-delimited list of attribute=expression pairs.

• The delete statement does just that, for rows in a table.

 DELETE FROM <table name>

 WHERE <condition>;

If the WHERE clause is omitted, then every row of the table is deleted (which again is

usually not what you want to do)—and again, you will not get a “do you really want to

do this?” message.

• If you are using a large multi-user system, you may need to make your DML changes visible

to the rest of the users of the database. Although this might be done automatically when you

log out, you could also just type:

M.Sc. (CS) UNIT – III

 COMMIT;

• If you’ve messed up your changes in this type of system, and want to restore your private

copy of the database to the way it was before you started (this only works if you haven’t

already typed COMMIT), just type:

 ROLLBACK;

Although single-user systems don’t support commit and rollback statements, they are

used in large systems to control transactions, which are sequences of changes to the

database. Transactions are frequently covered in more advanced courses.

DDL

Data Definition Language (DDL) statements are used to define the database structure or schema.

Some examples:

o CREATE - to create objects in the database

o ALTER - alters the structure of the database

o DROP - delete objects from the database

o TRUNCATE - remove all records from a table, including all spaces allocated for the

records are removed

o COMMENT - add comments to the data dictionary

o RENAME - rename an object

DML

Data Manipulation Language (DML) statements are used for managing data within schema

objects. Some examples:

o SELECT - retrieve data from the a database

o INSERT - insert data into a table

o UPDATE - updates existing data within a table

o DELETE - deletes all records from a table, the space for the records remain

o MERGE - UPSERT operation (insert or update)

o CALL - call a PL/SQL or Java subprogram

o EXPLAIN PLAN - explain access path to data

o LOCK TABLE - control concurrency

DCL

Data Control Language (DCL) statements. Some examples:

o GRANT - gives user's access privileges to database

o REVOKE - withdraw access privileges given with the GRANT command

TCL

Transaction Control (TCL) statements are used to manage the changes made by DML statements.

It allows statements to be grouped together into logical transactions.

M.Sc. (CS) UNIT – III

o COMMIT - save work done

o SAVEPOINT - identify a point in a transaction to which you can later roll back

o ROLLBACK - restore database to original since the last COMMIT

o SET TRANSACTION - Change transaction options like isolation level and what rollback

segment to use

Assertions

1. An assertion is a predicate expressing a condition we wish the database to always satisfy.

2. Domain constraints, functional dependency and referential integrity are special forms of

assertion.

3. Where a constraint cannot be expressed in these forms, we use an assertion, e.g.

o Ensuring the sum of loan amounts for each branch is less than the sum of all account

balances at the branch.

o Ensuring every loan customer keeps a minimum of $1000 in an account.

4. An assertion in DQL-92 takes the form,

5. create assertion assertion-name check predicate

6.

7. Two assertions mentioned above can be written as follows.

Ensuring the sum of loan amounts for each branch is less than the sum of all account

balances at the branch.

 create assertion sum-constraint check

 (not exists (select * from branch

 where (select sum)amount) from loan

 where (loan.bname = branch.bname >=

 (select sum)amount) from account

where (account.bname = branch.bname)))

8. Ensuring every loan customer keeps a minimum of $1000 in an account.

9. create assertion balance-constraint check

10.

11. (not exists (select * from loan L

12.

13. (where not exists (select *

14.

15. from borrower B, depositor D, account A

M.Sc. (CS) UNIT – III

16.

17. where L.loan# = B.loan# and B.cname = D.cname

18.

19. and D.account# = A.account#

20. and A.balance >= 1000)))

21.

22. When an assertion is created, the system tests it for validity.

If the assertion is valid, any further modification to the database is allowed only if it does

not cause that assertion to be violated.

This testing may result in significant overhead if the assertions are complex. Because of

this, the assert should be used with great care.

23. Some system developer omits support for general assertions or provides specialized form

of assertions that are easier to test.

Trivial Functional Dependency

 Trivial − If a functional dependency (FD) X → Y holds, where Y is a subset of X, then it

is called a trivial FD. Trivial FDs always hold.

 Non-trivial − If an FD X → Y holds, where Y is not a subset of X, then it is called a non-

trivial FD.

 Completely non-trivial − If an FD X → Y holds, where x intersect Y = Φ, it is said to be

a completely non-trivial FD.

Normalization in DBMS: 1NF, 2NF, 3NF and BCNF in Database

Normalization is a process of organizing the data in database to avoid data redundancy, insertion

anomaly, update anomaly & deletion anomaly. Let’s discuss about anomalies first then we will

discuss normal forms with examples.

Anomalies in DBMS

There are three types of anomalies that occur when the database is not normalized. These are –

Insertion, update and deletion anomaly. Let’s take an example to understand this.

Example: Suppose a manufacturing company stores the employee details in a table named

employee that has four attributes: emp_id for storing employee’s id, emp_name for storing

employee’s name, emp_address for storing employee’s address and emp_dept for storing the

department details in which the employee works. At some point of time the table looks like this:

emp_id emp_name emp_address emp_dept

101 Rick Delhi D001

101 Rick Delhi D002

M.Sc. (CS) UNIT – III

123 Maggie Agra D890

166 Glenn Chennai D900

166 Glenn Chennai D004

The above table is not normalized. We will see the problems that we face when a table is not

normalized.

Update anomaly: In the above table we have two rows for employee Rick as he belongs to two

departments of the company. If we want to update the address of Rick then we have to update the

same in two rows or the data will become inconsistent. If somehow, the correct address gets

updated in one department but not in other then as per the database, Rick would be having two

different addresses, which is not correct and would lead to inconsistent data.

Insert anomaly: Suppose a new employee joins the company, who is under training and currently

not assigned to any department then we would not be able to insert the data into the table if

emp_dept field doesn’t allow nulls.

Delete anomaly: Suppose, if at a point of time the company closes the department D890 then

deleting the rows that are having emp_dept as D890 would also delete the information of employee

Maggie since she is assigned only to this department.

To overcome these anomalies we need to normalize the data. In the next section we will discuss

about normalization.

Normalization
Here are the most commonly used normal forms:

 First normal form(1NF)

 Second normal form(2NF)

 Third normal form(3NF)

 Boyce & Codd normal form (BCNF)

First normal form (1NF)

As per the rule of first normal form, an attribute (column) of a table cannot hold multiple values.

It should hold only atomic values.

Example: Suppose a company wants to store the names and contact details of its employees. It

creates a table that looks like this:

emp_id emp_name emp_address emp_mobile

101 Herschel New Delhi 8912312390

102 Jon Kanpur
8812121212

9900012222

M.Sc. (CS) UNIT – III

103 Ron Chennai 7778881212

104 Lester Bangalore
9990000123

8123450987

Two employees (Jon & Lester) are having two mobile numbers so the company stored them in the

same field as you can see in the table above.

This table is not in 1NF as the rule says “each attribute of a table must have atomic (single)

values”, the emp_mobile values for employees Jon & Lester violates that rule.

To make the table complies with 1NF we should have the data like this:

emp_id emp_name emp_address emp_mobile

101 Herschel New Delhi 8912312390

102 Jon Kanpur 8812121212

102 Jon Kanpur 9900012222

103 Ron Chennai 7778881212

104 Lester Bangalore 9990000123

104 Lester Bangalore 8123450987

Second normal form (2NF)

A table is said to be in 2NF if both the following conditions hold:

 Table is in 1NF (First normal form)

 No non-prime attribute is dependent on the proper subset of any candidate key of table.

An attribute that is not part of any candidate key is known as non-prime attribute.

Example: Suppose a school wants to store the data of teachers and the subjects they teach. They

create a table that looks like this: Since a teacher can teach more than one subjects, the table can

have multiple rows for a same teacher.

teacher_id subject teacher_age

111 Maths 38

111 Physics 38

222 Biology 38

333 Physics 40

333 Chemistry 40

Candidate Keys: {teacher_id, subject}

Non prime attribute: teacher_age

M.Sc. (CS) UNIT – III

The table is in 1 NF because each attribute has atomic values. However, it is not in 2NF because

non prime attribute teacher_age is dependent on teacher_id alone which is a proper subset of

candidate key. This violates the rule for 2NF as the rule says “no non-prime attribute is dependent

on the proper subset of any candidate key of the table”.

To make the table complies with 2NF we can break it in two tables like this:

teacher_details table:

teacher_id teacher_age

111 38

222 38

333 40

teacher_subject table:

teacher_id subject

111 Maths

111 Physics

222 Biology

333 Physics

333 Chemistry

Now the tables comply with Second normal form (2NF).

Third Normal form (3NF)

A table design is said to be in 3NF if both the following conditions hold:

 Table must be in 2NF

 Transitive functional dependency of non-prime attribute on any super key should be

removed.

An attribute that is not part of any candidate key is known as non-prime attribute.

In other words 3NF can be explained like this: A table is in 3NF if it is in 2NF and for each

functional dependency X-> Y at least one of the following conditions hold:

 X is a super key of table

 Y is a prime attribute of table

An attribute that is a part of one of the candidate keys is known as prime attribute.

Example: Suppose a company wants to store the complete address of each employee, they create

a table named employee_details that looks like this:

emp_id emp_name emp_zip emp_state emp_city emp_district

1001 John 282005 UP Agra Dayal Bagh

http://beginnersbook.com/2015/04/transitive-dependency-in-dbms/
http://beginnersbook.com/2015/04/candidate-key-in-dbms/
http://beginnersbook.com/2015/04/super-key-in-dbms/

M.Sc. (CS) UNIT – III

1002 Ajeet 222008 TN Chennai M-City

1006 Lora 282007 TN Chennai Urrapakkam

1101 Lilly 292008 UK Pauri Bhagwan

1201 Steve 222999 MP Gwalior Ratan

Super keys: {emp_id}, {emp_id, emp_name}, {emp_id, emp_name, emp_zip}…so on

Candidate Keys: {emp_id}

Non-prime attributes: all attributes except emp_id are non-prime as they are not part of any

candidate keys.

Here, emp_state, emp_city & emp_district dependent on emp_zip. And, emp_zip is dependent on

emp_id that makes non-prime attributes (emp_state, emp_city & emp_district) transitively

dependent on super key (emp_id). This violates the rule of 3NF.

To make this table complies with 3NF we have to break the table into two tables to remove the

transitive dependency:

employee table:

emp_id emp_name emp_zip

1001 John 282005

1002 Ajeet 222008

1006 Lora 282007

1101 Lilly 292008

1201 Steve 222999

employee_zip table:

emp_zip emp_state emp_city emp_district

282005 UP Agra Dayal Bagh

222008 TN Chennai M-City

282007 TN Chennai Urrapakkam

292008 UK Pauri Bhagwan

222999 MP Gwalior Ratan

M.Sc. (CS) UNIT – III

Boyce Codd normal form (BCNF)

It is an advance version of 3NF that’s why it is also referred as 3.5NF. BCNF is stricter than 3NF.

A table complies with BCNF if it is in 3NF and for every functional dependency X->Y, X should

be the super key of the table.

Example: Suppose there is a company wherein employees work in more than one department.

They store the data like this:

emp_id emp_nationality emp_dept dept_type dept_no_of_emp

1001 Austrian
Production and

planning
D001 200

1001 Austrian stores D001 250

1002 American
design and technical

support
D134 100

1002 American Purchasing department D134 600

Functional dependencies in the table above:

emp_id -> emp_nationality

emp_dept -> {dept_type, dept_no_of_emp}

Candidate key: {emp_id, emp_dept}

The table is not in BCNF as neither emp_id nor emp_dept alone are keys.

To make the table comply with BCNF we can break the table in three tables like this:

emp_nationality table:

emp_id emp_nationality

1001 Austrian

1002 American

emp_dept table:

emp_dept dept_type dept_no_of_emp

Production and planning D001 200

stores D001 250

design and technical support D134 100

Purchasing department D134 600

emp_dept_mapping table:

emp_id emp_dept

http://beginnersbook.com/2015/04/functional-dependency-in-dbms/

M.Sc. (CS) UNIT – III

1001 Production and planning

1001 stores

1002 design and technical support

1002 Purchasing department

Functional dependencies:

emp_id -> emp_nationality

emp_dept -> {dept_type, dept_no_of_emp}

Candidate keys:

For first table: emp_id

For second table: emp_dept

For third table: {emp_id, emp_dept}

This is now in BCNF as in both the functional dependencies left side part is a key.

Decomposition

1. The previous example might seem to suggest that we should decompose schema as much

as possible.

Careless decomposition, however, may lead to another form of bad design.

2. Consider a design where Lending-schema is decomposed into two schemas

3. Branch-customer-schema = (bname, bcity, assets, cname)

4.

5. Customer-loan-schema = (cname, loan#, amount)

6.

7. We construct our new relations from lending by:

8. branch-customer =

9.

10. customer-loan =

Figure 7.2: The decomposed lending relation.

11. It appears that we can reconstruct the lending relation by performing a natural join on the

two new schemas.

12. Figure 7.3 shows what we get by computing branch-customer customer-loan.

http://www.cs.sfu.ca/CourseCentral/354/zaiane/material/notes/Chapter7/node4.html#fig74join

M.Sc. (CS) UNIT – III

Figure 7.3: Join of the decomposed relations.

13. We notice that there are tuples in branch-customer customer-loan that are not in lending.

14. How did this happen?

o The intersection of the two schemas is cname, so the natural join is made on the

basis of equality in the cname.

o If two lendings are for the same customer, there will be four tuples in the natural

join.

o Two of these tuples will be spurious - they will not appear in the

original lending relation, and should not appear in the database.

o Although we have more tuples in the join, we have less information.

o Because of this, we call this a lossy or lossy-join decomposition.

o A decomposition that is not lossy-join is called a lossless-join decomposition.

o The only way we could make a connection between branch-

customer and customer-loan was through cname.

15. When we decomposed Lending-schema into Branch-schema and Loan-info-schema, we

will not have a similar problem. Why not?

16. Branch-schema = (bname, bcity, assets)

17.

18. Branch-loan-schema = (bname, cname, loan#, amount)

19.

o The only way we could represent a relationship between tuples in the two relations

is through bname.

o This will not cause problems.

o For a given branch name, there is exactly one assets value and branch city.

20. For a given branch name, there is exactly one assets value and exactly one bcity; whereas

a similar statement associated with a loan depends on the customer, not on the amount of

the loan (which is not unique).

21. We'll make a more formal definition of lossless-join:

o Let R be a relation schema.

o A set of relation schemas is a decomposition of R if

o That is, every attribute in R appears in at least one for .

o Let r be a relation on R, and let

M.Sc. (CS) UNIT – III

o That is, is the database that results from

decomposing R into .

o It is always the case that:

o To see why this is, consider a tuple .

 When we compute the relations , the tuple t gives rise to one

tuple in each .

 These n tuples combine together to regenerate t when we compute the

natural join of the .

 Thus every tuple in r appears in .

o However, in general,

o We saw an example of this inequality in our decomposition of lending into branch-

customer and customer-loan.

o In order to have a lossless-join decomposition, we need to impose some constraints

on the set of possible relations.

o Let C represent a set of constraints on the database.

o A decomposition of a relation schema R is a lossless-join

decomposition for R if, for all relations r on schema R that are legal under C:

22. In other words, a lossless-join decomposition is one in which, for any legal relation r, if we

decompose r and then ``recompose'' r, we get what we started with - no more and no less.

Multivalued dependency

In database theory, a multivalued dependency is a full constraint between two sets of attributes

in a relation.

In contrast to the functional dependency, the multivalued dependency requires that

certain tuples be present in a relation. Therefore, a multivalued dependency is a special case

of tuple-generating dependency. The multivalued dependency plays a role in the 4NF database

normalization.

A multivalued dependency is a special case of a join dependency, with only two sets of values

involved, i.e. it is a binary join dependency.

A multivalued dependency exists when there are at least 3 attributes (like X,Y and Z) in

a relation and for value of X there is a well defined set of values of Y and a well defined set of

values of Z. However, the set of values of Y is independent of set Z and vice versa.

Fifth Normal Form (5NF)

A database is said to be in 5NF, if and only if,

 It's in 4NF

https://en.wikipedia.org/wiki/Database_theory
https://en.wikipedia.org/wiki/Dependency_theory_(database_theory)
https://en.wikipedia.org/wiki/Relation_(database)
https://en.wikipedia.org/wiki/Functional_dependency
https://en.wikipedia.org/wiki/Tuple
https://en.wikipedia.org/wiki/4NF
https://en.wikipedia.org/wiki/4NF
https://en.wikipedia.org/wiki/Join_dependency
https://en.wikipedia.org/wiki/Attribute_(computing)
https://en.wikipedia.org/wiki/Relation_(database)

M.Sc. (CS) UNIT – III

 If we can decompose table further to eliminate redundancy and anomaly, and when we re-

join the decomposed tables by means of candidate keys, we should not be losing the

original data or any new record set should not arise. In simple words, joining two or

more decomposed table should not lose records nor create new records.

Consider an example of different Subjects taught by different lecturers and the lecturers taking

classes for different semesters.

Note: Please consider that Semester 1 has Mathematics, Physics and Chemistry and Semester 2

has only Mathematics in its academic year!!

In above table, Rose takes both Mathematics and Physics class for Semester 1, but she does not

take Physics class for Semester 2. In this case, combination of all these 3 fields is required to

identify a valid data. Imagine we want to add a new class - Semester3 but do not know which

Subject and who will be taking that subject. We would be simply inserting a new entry with Class

as Semester3 and leaving Lecturer and subject as NULL. As we discussed above, it's not a good

to have such entries. Moreover, all the three columns together act as a primary key, we cannot

leave other two columns blank!

